Fully automated Machine Learning-based selection of optimal bSSFP frequency offset for artifact reduction in cardiac MRI

Seung Su Yoon^{1,2}, Fasil Gadjimuradov^{1,2}, Michaela Schmidt¹, Jens Wetzl¹, Andreas Maier²

¹ Magnetic Resonance, Siemens Healthcare GmbH, Erlangen, Germany ² Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany

05 May 2022

Declaration of interest

• PhD stipend from Siemens Healthcare GmbH

Introduction

- In bSSFP sequences, signal modulation often occurs due to B₀ inhomogeneity at higher field strengths
 - Banding (hypointensity) and flow artifacts (hyperintensity)
- To minimize the artifacts in a region of interest (ROI), frequency scout scans are acquired
- The optimal frequency offset is visually selected in clinical practice^{1,2}
- → Fully automated image-based system for selecting the optimal frequency offset

Methods

Methods

• High frequency component extraction:

 Fourier transformation – high-pass filtering – inverse Fourier transformation and subtraction over series

Adaptive weighting map¹:

Data sets

- Multiple 3T scanners (n=38)
- Part of the data used for our validation originates from the Hamburg City Health Study
- Manual annotation
 - Range of acceptable frequency offset values

Results

= expert annotation

Results

Results

- The system achieved an accuracy of 92.1%.
- The maximum difference was off by 2 frames.

11

Results

mean

8

10

EACVI European Association of Cardiovascular Imaging

Discussion and future work

- The adaptive weighting map correctly detects areas containing artifacts
- The heuristic approach of selecting N reference images can be replaced by a neural network algorithm
- Evaluate on a larger dataset